# Generator函数的异步应用

# 传统方法

ES6 诞生以前,异步编程的方法,大概有下面四种。

  • 回调函数
  • 事件监听
  • 发布/订阅
  • Promise 对象

Generator 函数将 JavaScript 异步编程带入了一个全新的阶段。

# 基本概念

# 1. 异步

所谓"异步",简单说就是一个任务不是连续完成的,可以理解成该任务被人为分成两段,先执行第一段,然后转而执行其他任务,等做好了准备,再回过头执行第二段。

比如,有一个任务是读取文件进行处理,任务的第一段是向操作系统发出请求,要求读取文件。然后,程序执行其他任务,等到操作系统返回文件,再接着执行任务的第二段(处理文件)。这种不连续的执行,就叫做异步。

相应地,连续的执行就叫做同步。由于是连续执行,不能插入其他任务,所以操作系统从硬盘读取文件的这段时间,程序只能干等着。

# 2. 回调函数

JavaScript 语言对异步编程的实现,就是回调函数。所谓回调函数,就是把任务的第二段单独写在一个函数里面,等到重新执行这个任务的时候,就直接调用这个函数。回调函数的英语名字callback,直译过来就是"重新调用"。

读取文件进行处理,是这样写的。

fs.readFile('/etc/passwd', 'utf-8', function (err, data) {
  if (err) throw err;
  console.log(data);
});
1
2
3
4

上面代码中,readFile函数的第三个参数,就是回调函数,也就是任务的第二段。等到操作系统返回了/etc/passwd这个文件以后,回调函数才会执行。

一个有趣的问题是,为什么 Node 约定,回调函数的第一个参数,必须是错误对象err(如果没有错误,该参数就是null)?

原因是执行分成两段,第一段执行完以后,任务所在的上下文环境就已经结束了。在这以后抛出的错误,原来的上下文环境已经无法捕捉,只能当作参数,传入第二段。

# 3. Promise

回调函数本身并没有问题,它的问题出现在多个回调函数嵌套。假定读取A文件之后,再读取B文件,代码如下。

fs.readFile(fileA, 'utf-8', function (err, data) {
  fs.readFile(fileB, 'utf-8', function (err, data) {
    // ...
  });
});
1
2
3
4
5

不难想象,如果依次读取两个以上的文件,就会出现多重嵌套。代码不是纵向发展,而是横向发展,很快就会乱成一团,无法管理。因为多个异步操作形成了强耦合,只要有一个操作需要修改,它的上层回调函数和下层回调函数,可能都要跟着修改。这种情况就称为"回调函数地狱"(callback hell)。

Promise 对象就是为了解决这个问题而提出的。它不是新的语法功能,而是一种新的写法,允许将回调函数的嵌套,改成链式调用。采用 Promise,连续读取多个文件,写法如下。

var readFile = require('fs-readfile-promise');

readFile(fileA)
.then(function (data) {
  console.log(data.toString());
})
.then(function () {
  return readFile(fileB);
})
.then(function (data) {
  console.log(data.toString());
})
.catch(function (err) {
  console.log(err);
});
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

上面代码中,我使用了fs-readfile-promise模块,它的作用就是返回一个 Promise 版本的readFile函数。Promise 提供then方法加载回调函数,catch方法捕捉执行过程中抛出的错误。

可以看到,Promise 的写法只是回调函数的改进,使用then方法以后,异步任务的两段执行看得更清楚了,除此以外,并无新意。

Promise 的最大问题是代码冗余,原来的任务被 Promise 包装了一下,不管什么操作,一眼看去都是一堆then,原来的语义变得很不清楚。

那么,有没有更好的写法呢?

# Generator 函数

# 1. 协程

传统的编程语言,早有异步编程的解决方案(其实是多任务的解决方案)。其中有一种叫做"协程"(coroutine),意思是多个线程互相协作,完成异步任务。

协程有点像函数,又有点像线程。它的运行流程大致如下。

  • 第一步,协程A开始执行。
  • 第二步,协程A执行到一半,进入暂停,执行权转移到协程B。
  • 第三步,(一段时间后)协程B交还执行权。
  • 第四步,协程A恢复执行。

上面流程的协程A,就是异步任务,因为它分成两段(或多段)执行。

举例来说,读取文件的协程写法如下。

function* asyncJob() {
  // ...其他代码
  var f = yield readFile(fileA);
  // ...其他代码
}
1
2
3
4
5

上面代码的函数asyncJob是一个协程,它的奥妙就在其中的yield命令。它表示执行到此处,执行权将交给其他协程。也就是说,yield命令是异步两个阶段的分界线。

协程遇到yield命令就暂停,等到执行权返回,再从暂停的地方继续往后执行。它的最大优点,就是代码的写法非常像同步操作,如果去除yield命令,简直一模一样。

# 2. 协程的 Generator 函数实现

Generator 函数是协程在 ES6 的实现,最大特点就是可以交出函数的执行权(即暂停执行)。

整个 Generator 函数就是一个封装的异步任务,或者说是异步任务的容器。异步操作需要暂停的地方,都用yield语句注明。Generator 函数的执行方法如下。

function* gen(x) {
  var y = yield x + 2;
  return y;
}

var g = gen(1);
g.next() // { value: 3, done: false }
g.next() // { value: undefined, done: true }
1
2
3
4
5
6
7
8

上面代码中,调用 Generator 函数,会返回一个内部指针(即遍历器)g。这是 Generator 函数不同于普通函数的另一个地方,即执行它不会返回结果,返回的是指针对象。调用指针g的next方法,会移动内部指针(即执行异步任务的第一段),指向第一个遇到的yield语句,上例是执行到x + 2为止。

换言之,next方法的作用是分阶段执行Generator函数。每次调用next方法,会返回一个对象,表示当前阶段的信息(value属性和done属性)。value属性是yield语句后面表达式的值,表示当前阶段的值;done属性是一个布尔值,表示 Generator 函数是否执行完毕,即是否还有下一个阶段。

# 3. Generator 函数的数据交换和错误处理

Generator 函数可以暂停执行和恢复执行,这是它能封装异步任务的根本原因。除此之外,它还有两个特性,使它可以作为异步编程的完整解决方案:函数体内外的数据交换和错误处理机制。

next返回值的 value 属性,是 Generator 函数向外输出数据;next方法还可以接受参数,向 Generator 函数体内输入数据。

function* gen(x){
  var y = yield x + 2;
  return y;
}

var g = gen(1);
g.next() // { value: 3, done: false }
g.next(2) // { value: 2, done: true }
1
2
3
4
5
6
7
8

上面代码中,第一个next方法的value属性,返回表达式x + 2的值3。第二个next方法带有参数2,这个参数可以传入 Generator 函数,作为上个阶段异步任务的返回结果,被函数体内的变量y接收。因此,这一步的value属性,返回的就是2(变量y的值)。

Generator 函数内部还可以部署错误处理代码,捕获函数体外抛出的错误。

function* gen(x){
  try {
    var y = yield x + 2;
  } catch (e){
    console.log(e);
  }
  return y;
}

var g = gen(1);
g.next();
g.throw('出错了');
// 出错了
1
2
3
4
5
6
7
8
9
10
11
12
13

上面代码的最后一行,Generator 函数体外,使用指针对象的throw方法抛出的错误,可以被函数体内的try...catch代码块捕获。这意味着,出错的代码与处理错误的代码,实现了时间和空间上的分离,这对于异步编程无疑是很重要的。

# 4. 异步任务的封装

下面看看如何使用 Generator 函数,执行一个真实的异步任务。

var fetch = require('node-fetch');

function* gen(){
  var url = 'https://api.github.com/users/github';
  var result = yield fetch(url);
  console.log(result.bio);
}
1
2
3
4
5
6
7

上面代码中,Generator 函数封装了一个异步操作,该操作先读取一个远程接口,然后从 JSON 格式的数据解析信息。就像前面说过的,这段代码非常像同步操作,除了加上了yield命令。

执行这段代码的方法如下。

var g = gen();
var result = g.next();

result.value.then(function(data){
  return data.json();
}).then(function(data){
  g.next(data);
});
1
2
3
4
5
6
7
8

上面代码中,首先执行 Generator 函数,获取遍历器对象,然后使用next方法(第二行),执行异步任务的第一阶段。由于Fetch模块返回的是一个 Promise 对象,因此要用then方法调用下一个next方法。

可以看到,虽然 Generator 函数将异步操作表示得很简洁,但是流程管理却不方便(即何时执行第一阶段、何时执行第二阶段)。